سونوگرافی فراصوتی
سونوگرافی فراصوتی یکی از روشهای تشخیص بیماری در پزشکی است. به این روش اکوگرافی، پژواکنگاری و صوتنگاری نیز گفته میشود. این روش بر مبنای امواج فراصوت و برای بررسی بافتهای زیرجلدی مانند عضلات، مفاصل، تاندونها و اندامهای داخلی بدن و ضایعات آنها پی ریزی شدهاست. سونوگرافی در حاملگی نیز کاربردهای وسیعی دارد. همچنین امروزه سونوگرافی کاربردهای درمانی نیز دارد.

ریشه لغوی
کلمه سونوگرافی از لفظ لاتین sono به معنی صوت و نیز graphic به معنی شکل و ترسیم گرفته شده و ultrasound از ultra به معنی ماورا و نیز sound به معنی صوت یا صدا گرفته شدهاست.
تاریخچه
در سال ۱۸۷۶ میلادی، فرانسیس گالتون برای اولین بار پی به وجود امواج فراصوت برد. در زمان جنگ جهانی اول کشور انگلستان برای کمک به جلوگیری از غرق شدن کشتیهایش توسط زیردریاییهای کشور آلمان در اقیانوس آتلانتیک شمالی دستگاه کشف کننده زیردریاییها به کمک امواج صوتی به نام صوتیاب (Sonar) ابداع کرد. این دستگاه امواج فراصوت تولید میکرد که در پیدا کردن مسیر کشتیها استفاده میشد. این تکنیک در زمان جنگ جهانی دوم تکمیل گردید و بعدها بطور گستردهای در صنعت این کشور برای آشکار سازی شکافها در فلزات و سایر موارد مورد استفاده قرار میگرفت. از کاربرد بخصوصی که انعکاس صوت در جنگ و صنعت داشت صوتیاب به علم پزشکی وارد شد و تبدیل به یک وسیله تشخیصی بزرگ در علم پزشکی گردید.
سیر تحولی در رشد
نخستین دستگاه تولید کننده امواج فراصوت در پزشکی، در سال ۱۹۳۷ میلادی توسط دوسیک اختراع شد و روی مغز انسان آزمایش شد. اگر چه فراصوت در ابتدا فقط برای مشخص کردن خط وسط مغز بود، اکنون بصورت یک روش تشخیصی و درمانی مهم درآمده و پیشرفت روز به روز انواع نسلهای دستگاههای تولید فراصوت، تحولات عظیمی در تشخیص و درمان در علم پزشکی بوجود آوردهاست. اگرچه بر اساس آماری که در سال ۲۰۰۰ گرفته شده اولتراسوند بعلت هزینه پایینتر، ایمنی بیشتر، حمل و نقل آسان وامکان ارائه تصاویر زنده بیشترین کاربرد را در مقایسه با سایر روشهای تصویربرداری دارد ولی بر اساس آمار به ترتیب سی. تی. اسکن (CT) و ام. آر. آی (MRI) و پس از آن تصویربرداری هستهای بهویژه مقطعنگاری پوزیترون (PET) بیشترین کاربرد را دارند چراکه سامانه فراصوتی دارای محدودیتهایی نیز هست از جمله:
امواج فراصوت قابلیت عبور از استخوان را ندارند. همچنین از گاز و هوا نیز نمیتوانند عبور کنند و بازتاب پیدا میکنند. بنابراین روش ایدهآلی برای تصویربرداری از سینه، روده و معده نمیباشند. گازهای رودهای جلوی تصویربرداری از ساختمانهای داخلیتر مثل پانکراس و آئورت را میگیرند. دیگراینکه امواج در بافتها افت کرده و بهعنوان مثال، این مساله تصویر برداری از قلب افراد چاق را با مشکل مواجه میکند.
تعریف امواج فراصوت
امواج فراصوت به شکلی از انرژی از امواج مکانیکی گفته میشود که فرکانس آنها بالاتر از حد شنوایی انسان باشد. گوش انسان قادر است امواج بین ۲۰ هرتز تا ۲۰۰۰۰ هرتز را بشنود. هر موج (شنوایی یا فراصوت) یک آشفتگی مکانیکی در یک محیط گاز، مایع و یا جامد است که به بیرون از چشمه صوتی و با سرعتی یکنواخت و معین حرکت میکند. در حرکت یا گسیل موج مکانیکی، ماده منتقل نمیشود. اگر ارتعاش ذرات در جهت عمود بر انتشار صوت باشد، موج عرضی است که بیشتر در جامدات رخ میدهد و در صورتی که ارتعاش در راستای انتشار امواج باشد، موج طولی است. انتشار در بافتهای بدن به صورت امواج طولی است. از این رو در پزشکی با اینگونه امواج (بالای ۲۰٬۰۰۰ hertz) سر و کار داریم. در کاربردهای تصویر برداری پزشکی، امواج فراصوت در رنج فرکانسی ۲ تا ۲۰ مگاهرتز به کار گرفته میشوند. فرکانسهای بالاتر از این میزان کاربردهای تحقیقاتی و آزمایشگاهی دارند.
روشهای تولید امواج فراصوت
روش پیزوالکتریسیته تأثیر متقابل فشار مکانیکی و نیروی الکتریکی را در یک محیط اثر پیزو الکتریسیته میگویند. بطور مثال بلورهایی وجود دارند که در اثر فشار مکانیکی، نیروی الکتریکی تولید میکنند و برعکس ایجاد اختلاف پتانسیل در دو سوی همین بلور و در همین راستا باعث فشردگی و انبساط آنها میشود که ادامه دادن به این فشردگی و انبساط باعث نوسان و تولید امواج میشود. مواد (بلورهای) دارای این ویژگی را مواد پیزو الکتریک میگویند. اثر پیزو الکتریسیته فقط در بلورهایی که دارای تقارن مرکزی نیستند، وجود دارد. بلور کوارتز از این دسته مواد است و اولین مادهای بود که برای ایجاد امواج فراصوت از آن استفاده میشد که اکنون هم استفاده میشود.
اگر چه مواد متبلور طبیعی که دارای خاصیت پیزو الکتریسیته باشند، فراوان هستند. ولی در کاربرد امواج فراصوت در پزشکی از کریستالهایی استفاده میشود که سرامیکی بوده و بطور مصنوعی تهیه میشوند. از نمونه این نوع کریستالها، مخلوطی از زیرکونیت و تیتانیت سرب (Lead zirconat & Lead titanat) است که به شدت دارای خاصیت پیزوالکتریسیته هستند. به این مواد که واسطهای برای تبدیل انرژی الکتریکی به انرژی مکانیکی و بالعکس هستند، مبدل یا ترانسدیوسر (transuscer) میگویند. یک ترانسدیوسر فراصوتی بکار میرود که علامت الکتریکی را به انرژی فراصوت تبدیل کند که به داخل بافت بدن نفوذ و انرژی فراصوت انعکاس یافته را به علامت الکتریکی تبدیل کند.
روش مگنتو استریکسیون
این خاصیت در مواد فرومغناطیس (مواد دارای دو قطبیهای مغناطیسی کوچک بطور خود به خود با دو قطبیهای مجاور خود همخط شوند) تحت تأثیر میدان مغناطیسی بوجود میآید. مواد مزبور در این میدانها تغییر طول میدهند و بسته به فرکانس (شمارش زنشهای کامل موج در یک ثانیه) جریان متناوب به نوسان در میآیند و میتوانند امواج فراصوت تولید کنند. این مواد در پزشکی کاربرد ندارند و شدت امواج تولید شده به این روش کم است و بیشتر کاربرد آزمایشگاهی دارد.
عملکرد دستگاههای تصویربرداری و تشخیص با امواج فراصوت
در سیستمهای فراصوت، پالسهای مکانیکی با فرکانسی در محدودهٔ فراصوت، توسط پراب مخصوص منتشر میگردد. این پرابها دارای آرایهای از فرستندههای فرا صوت میباشد. بخشی از امواج منتشر شده در محیط (در اینجا بافتهای زیستی)، با برخورد به مرزهای دو بافت با چگالی متفاوت، دچار بازتابش (اکو) میگردند. میزان این بازتابش وابسته به امپدانس انتشار امواج فراصوت در دو محیط میباشد. اساس سیستمهای تصویربرداری آلتراسوند، تشخیص تاخیرهای سیگنالهای دریافتی و پالسهای ارسال شده میباشد.
در کاربردهای پزشکی، امواج فراصوت با فرکانسهایی در رنج ۱ مگاهرتز الی ۱۸ مگاهرتز، به کار گرفته میشود. فرکانسهای بالا نیاز به فرستندههایی با ابعاد کوچکتر داشته و با توجه به کوتاه تر شدن طول موج، امکان دستیابی به رزولوشن بالاتر را فراهم میآورد، اما با این وجود، میزان تضعیف سیگنال در محیط انتشار، با افزایش فرکانس، افزایش مییابد. به همین دلیل رنج فرکانس معمول ۳ الی ۵ مگاهرتز میباشد.
برای تشخیص سرعت سیالات، مانند سرعت جریان خون، میتوان از اثر داپلی نیز بهره برد. با توجه به اثر دوپلر حرکت سیال موجب ایجاد شیفت فرکانسی در امواج بازتابیده شده میشود. میزان این شیفت فرکانس وابسته به اندازه و جهت سرعت میباشد.
با افزایش فرکانس، الگوی تابش فرستنده به حالت ایزوتروپیک نزدیک میگردد. برای متمرکز نمودن پالسهای ارسالی در یک راستا و حتی یک نقطه خاص میبایست از پرابهای آرایه فازی، استفاده نمود. این پرابها شامل چندین فرستنده/گیرنده پیزوالکتریک بر روی خود میباشند که میتوان به صورت یک ردیف (یک بعدی) و یا چندین ردیف (دو بعدی) کنار هم چیده شده باشند. در حالت پسیو، میتوان چیدمان این المانها را به نحوی طراحی نمود که لوب اصلی الگوی تابش آنتن در یک راستای خاص متمرکز گردد.
در حالت اکتیو فاز، با ایجاد تاخیرهای کنترل شده، در پالسهای ارسالی توسط هر المنت، میتوان جهت لوب اصلی را نیز بدون تغییر موقعیت مکانیکی فرستنده، تغییر داد. در فرستندههای آرایه فازی دو بعدی اکتیو، امکان فوکوس کردن در یک نقطه خاص نیز فراهم میآید. این خصوصیت امکان ایجاد تصاویر دو بعدی و سه بعدی را بدون تغییر دادن مکان پراب، فراهم میآورد.
کاربرد امواج فراصوت
۱. کاربرد تشخیصی (سونوگرافی)
2. بیماریهای زنان و زایمان (Gynecology) مانند بررسی قلب جنین، اندازهگیری قطر سر (سن جنین)، بررسی جایگاه اتصال جفت و محل ناف، تومورهای پستان. 3. بیماریهای مغز و اعصاب(Neurology) مانند بررسی تومور مغزی، خونریزی مغزی به صورت اکوگرام مغزی یا اکوانسفالوگرافی.
4. بیماریهای چشم (ophthalmology) مانند تشخیص اجسام خارجی در درون چشم، تومور عصبی، خونریزی شبکیه، اندازهگیری قطر چشم، فاصله عدسی از شبکیه.
5. بیماریهای کبدی (Hepatic) مانند بررسی کیست و آبسه کبدی.
6. بیماریهای قلبی (cardiology) مانند بررسی اکوکاردیوگرافی.
۷. دندانپزشکی مانند اندازهگیری ضخامت بافت نرم در حفرههای دهانی. و نیز کاربردهای درمانی آن مانند جرم گیری لثه
۸. این امواج به علت اینکه مانند تشعشعات یونیزان عمل نمیکنند. بنابراین برای زنان و کودکان بیخطر هستند. ۹. همچنین برای تصویربرداری از سینه هااستفاده میشود. ۱۰. رزولوشن بالایی از این روش، برای تصویربرداری از بافتهای سطحی و سلولهای نزدیک سطح پوست استفاده میشود. کاربرد درمانی (سونوتراپی): ۱. در فیزیوتراپی جهت کاهش درد و التهاب و همچنین انعطافپذیری بافتها از اولترا سوند استفاده میگردد.
۲. کاربرد گرمایی 11. تزریق بدون جراحت با جذب امواج فراصوت بهوسیله بدن بخشی از انرژی آن به گرما تبدیل میشود. گرمای موضعی حاصل از جذب امواج فراصوت بهبودی را تسریع میکند. قابلیت کشسانی کلاژن (پروتئینی ارتجاعی) را افزایش میدهد. کشش در جوشگاههای زخم (scars) افزایش میدهد و باعث بهبود آنها میشود. اگر اسکار به بافتهای زیرین خود چسبیده باشد، باعث آزاد شدن آنها میشود. گرمای حاصل از امواج فراصوت با گرمای حاصل از گرمایش متفاوت است.
میکروماساژ مکانیکی
به هنگام فشردگی و انبساط محیط، امواج طولی فراصوتی روی بافت اثر میگذارند و باعث جابجایی آب میان بافتی و در نتیجه باعث کاهش ورم (تجمع آب میان بافتی در اثر ضربه به یک محل) میشوند.
درمان آسیب تازه و ورم:آسیب تازه معمولاً با ورم همراه است. فراصوت در بسیاری از موارد برای از بین بردن مواد دفعی در اثر ضربه و کاهش خطر چسبندگی بافتها بهم بکار میرود.
درمان ورم کهنه یا مزمن: فراصوت چسبندگیهایی که میان ساختمانهای مجاور ممکن است ایجاد شود را میشکند.
خطرات فراصوت
جستجو در ویکیانبار در ویکیانبار پروندههایی دربارهٔ سونوگرافی فراصوتی موجود است.
سوختگی
اگر امواج پیوسته و در یک مکان بدون چرخش بکار روند، در بافت باعث سوختگی میشود و باید امواج حرکت داده شوند.
پارگی کروموزومی
استفاده دراز مدت از امواج اولتراسوند با شدت خیلی بالا پارگی در رشته دی ان ای (DNA) را نشان میدهد.
ایجاد حفره
یکی از عوامل کاهش انرژی امواج اولتراسوند هنگام گذشتن از بافتهای بدن ایجاد حفره یا کاویتاسیون است. همه محلولها شامل مقدار قابل ملاحظهای حبابهای گاز غیر قابل دیدن هستند و دامنه بزرگ نوسانهای امواج اولتراسوند در داخل محلولها میتواند بر روی بافتها تغییرات بیولوژیکی ایجاد کند (پارگی در دیواره یاختهها و از هم گسستن مولکولهای بزرگ).
عایق صوتی
هر وسیلهای برای کاهش فشار صوتی با توجه به صدای منبع و گیرنده را عایق صوتی (به انگلیسی: Soundproofing) میگویند.
چندین روش اساسی برای کاهش صدا وجود دارد: افزایش فاصله بین منبع و گیرنده، با استفاده از موانع سر و صدا برای منعکس یا جذب انرژی از امواج صوتی است، با استفاده از سازههای میرایی مانند تیغههای صوتی، و یا با استفاده از عایقهای صوتی.
فواید استفاده از عایق صوتی
بهبود صدا در یک اتاق (اتاق بدون پژواک)
کاهش نشت صدا به / از اتاق مجاور و یا خارج از منزل
آکوستیک آرام بخش
کاهش سر و صدا
کنترل سر و صدا
محدود کردن سر و صدای ناخواسته
عایق صوتی میتواند از امواج صوتی ناخواسته غیر مستقیم مانند سرکوب بازتاب که باعث پژواک جلوگیری کند عایق صوتی میتواند انتقال امواج ناخواسته صدای مستقیم از منبع به شنونده غیر ارادی از طریق کاهش استفاده از فاصله و دخالت اشیاء در مسیر صدا مسیر سازد
روشهای ساده عایقکاری صوتی
1. بستن منافذ ورود و خروج هوا. هر منفذی که هوا بتواند از آن عبور کند،صدا را هم می تواندانتقال دهد. کلیه منافذ موجود در سقفها و دیوارهانظیر اطراف جعبه تقسیم های برق، کانالها و داکتها ،سیم ها و هرجایی راکه شیئی از داخل دیوار یا سقف عبور می کند با بتونه یا فوم پلی اورتان درزگیری نمایید.
2. جلوگیری از ایجاد "کانالهای عبور صدا " در دیوارها. هنگام ساخت بناهای جدید ، کلیدهای برق و دریچه های هوا را در داخل دیوارمشترک دو فضا ، پشت به پشت هم قرار ندهید.
3. اجتناب از استفاده از مصالح سخت. زیرا اینگونه مصالح ,صوت را به آسانی ازیک مکان به مکان دیگر انتقال می دهند.
4. استفاده از یک لایه انعطاف پذیرنظیر فوم منبسط شونده ، جهت جدا نمودن لوله ها از غلافها یا سوراخهایی که از آن عبور می کنند.
5. استفاده از عایق صوتی در دیوارهای ساختمانهای جدید جهت جلوگیری ازانتقال صدا بین اتاقهای مجاور. به منظور جلوگیری از انتقال صدای نامطلوب جریان سریع آب به هنگام تخلیه فلاش تانک توالت، لوله های پلاستیکی تخلیه آب را عایق بندی کنید.
6. استفاده از وسایل خانگی آرامتر، حتی اگر گرانتر از موارد مشابه پرصداتر باشند.
7. جدا نمودن تجهیزات صدادار از محلهای استراحت. استفاده از اطاقهای مجزای مجهز به عایق های صوتی می تواند ایده خوبی درطراحی منزل باشد. بکارگیری درهای مجهز به عایق بین کلیه فضاها ، به مقدار قابل ملاحظه ای از انتقال صدا در خانه جلوگیری می کند.
8. استفاده از مصالح جاذب صدا در کفها، دیوارها و سقفها. عایقهای صوتی به مانند موکت می توانند از عبور صدا جلوگیری نمایند. حتی الامکان ازبکارگیری کفپوشهای سخت، مانند سرامیک، بتن و چوب خودداری نمایید.
صوتشناسی
صوتشناسی یا آکوستیک یکی از شاخههای علم فیزیک است و موضوع آن بررسی موج های مکانیکی در گازها ، مایع ها و جامدها ،از جمله نوسان ها ، صدا ، فراصوت و فروصوت است.کاربردهای آکوستیک در بسیاری از جنبه های زندگی امروز دیده می شوند و ساده ترین نمونه آن صنایع صوتی و نیز کنترل نویز (مکانیکی)است.
واژه ی آکوستیک برگرفته از ریشه ی یونانی ακουστικός ، به معنای "برای و از شنوایی" و نیز از ἀκουστός به معنای قابل شنیدن است.
تاریخچه
از نظر اهمیتی که آکوستیک یا علم صدا دارا میباشد میتوان انتظار داشت که این موضوع در تاریخ علوم فیزیک جزو مطالب اساسی به شمار رفته باشد، در صورتی که چنین چیزی نیست، زیرا در قبال تاریخ سایر علوم، تاریخ آکوستیک قسمت از قلم افتاده و مهجوری بیش نیست. یکی از دلایل این مهجوریت تاریخی این است که نظریه اساسی اصلی راجع به انتشار و اخذ صوت از زمانهای بسیار قدیم در تحولات فکر بشری پیدا شده و اسلوب این فکر همان است که امروزه مورد قبول ماست.
تولید صوت
وقتی که به یک جسم جامد ضربه وارد میسازیم، تولید صدا میکند. تحت بعضی از شرایط صدای حاصل، بگوش انسان خوش آیند و مطبوع است و این در واقع اساس پیدایش علم موسیقی است که سالیان دراز قبل از تاریخ ضبط صوت، موجود بوده است، اما موسیقی، قرنها قبل از نظر علمی مورد تحقیق قرار گیرد، جزو صنایع ظریفه محسوب میگردید. این مطلب مورد قبول عموم است که اولین فیلسوف یونانی که مبنای موسیقی را برسی نموده است. فیثاغورث میباشد که ۶ قرن قبل از میلاد زندگی میکرده است.
سونوگرافی فراصوتی یکی از روشهای تشخیص بیماری در پزشکی است. به این روش اکوگرافی، پژواکنگاری و صوتنگاری نیز گفته میشود. این روش بر مبنای امواج فراصوت و برای بررسی بافتهای زیرجلدی مانند عضلات، مفاصل، تاندونها و اندامهای داخلی بدن و ضایعات آنها پی ریزی شدهاست. سونوگرافی در حاملگی نیز کاربردهای وسیعی دارد. همچنین امروزه سونوگرافی کاربردهای درمانی نیز دارد.

ریشه لغوی
کلمه سونوگرافی از لفظ لاتین sono به معنی صوت و نیز graphic به معنی شکل و ترسیم گرفته شده و ultrasound از ultra به معنی ماورا و نیز sound به معنی صوت یا صدا گرفته شدهاست.
تاریخچه
در سال ۱۸۷۶ میلادی، فرانسیس گالتون برای اولین بار پی به وجود امواج فراصوت برد. در زمان جنگ جهانی اول کشور انگلستان برای کمک به جلوگیری از غرق شدن کشتیهایش توسط زیردریاییهای کشور آلمان در اقیانوس آتلانتیک شمالی دستگاه کشف کننده زیردریاییها به کمک امواج صوتی به نام صوتیاب (Sonar) ابداع کرد. این دستگاه امواج فراصوت تولید میکرد که در پیدا کردن مسیر کشتیها استفاده میشد. این تکنیک در زمان جنگ جهانی دوم تکمیل گردید و بعدها بطور گستردهای در صنعت این کشور برای آشکار سازی شکافها در فلزات و سایر موارد مورد استفاده قرار میگرفت. از کاربرد بخصوصی که انعکاس صوت در جنگ و صنعت داشت صوتیاب به علم پزشکی وارد شد و تبدیل به یک وسیله تشخیصی بزرگ در علم پزشکی گردید.
سیر تحولی در رشد
نخستین دستگاه تولید کننده امواج فراصوت در پزشکی، در سال ۱۹۳۷ میلادی توسط دوسیک اختراع شد و روی مغز انسان آزمایش شد. اگر چه فراصوت در ابتدا فقط برای مشخص کردن خط وسط مغز بود، اکنون بصورت یک روش تشخیصی و درمانی مهم درآمده و پیشرفت روز به روز انواع نسلهای دستگاههای تولید فراصوت، تحولات عظیمی در تشخیص و درمان در علم پزشکی بوجود آوردهاست. اگرچه بر اساس آماری که در سال ۲۰۰۰ گرفته شده اولتراسوند بعلت هزینه پایینتر، ایمنی بیشتر، حمل و نقل آسان وامکان ارائه تصاویر زنده بیشترین کاربرد را در مقایسه با سایر روشهای تصویربرداری دارد ولی بر اساس آمار به ترتیب سی. تی. اسکن (CT) و ام. آر. آی (MRI) و پس از آن تصویربرداری هستهای بهویژه مقطعنگاری پوزیترون (PET) بیشترین کاربرد را دارند چراکه سامانه فراصوتی دارای محدودیتهایی نیز هست از جمله:
امواج فراصوت قابلیت عبور از استخوان را ندارند. همچنین از گاز و هوا نیز نمیتوانند عبور کنند و بازتاب پیدا میکنند. بنابراین روش ایدهآلی برای تصویربرداری از سینه، روده و معده نمیباشند. گازهای رودهای جلوی تصویربرداری از ساختمانهای داخلیتر مثل پانکراس و آئورت را میگیرند. دیگراینکه امواج در بافتها افت کرده و بهعنوان مثال، این مساله تصویر برداری از قلب افراد چاق را با مشکل مواجه میکند.
تعریف امواج فراصوت
امواج فراصوت به شکلی از انرژی از امواج مکانیکی گفته میشود که فرکانس آنها بالاتر از حد شنوایی انسان باشد. گوش انسان قادر است امواج بین ۲۰ هرتز تا ۲۰۰۰۰ هرتز را بشنود. هر موج (شنوایی یا فراصوت) یک آشفتگی مکانیکی در یک محیط گاز، مایع و یا جامد است که به بیرون از چشمه صوتی و با سرعتی یکنواخت و معین حرکت میکند. در حرکت یا گسیل موج مکانیکی، ماده منتقل نمیشود. اگر ارتعاش ذرات در جهت عمود بر انتشار صوت باشد، موج عرضی است که بیشتر در جامدات رخ میدهد و در صورتی که ارتعاش در راستای انتشار امواج باشد، موج طولی است. انتشار در بافتهای بدن به صورت امواج طولی است. از این رو در پزشکی با اینگونه امواج (بالای ۲۰٬۰۰۰ hertz) سر و کار داریم. در کاربردهای تصویر برداری پزشکی، امواج فراصوت در رنج فرکانسی ۲ تا ۲۰ مگاهرتز به کار گرفته میشوند. فرکانسهای بالاتر از این میزان کاربردهای تحقیقاتی و آزمایشگاهی دارند.
روشهای تولید امواج فراصوت
روش پیزوالکتریسیته تأثیر متقابل فشار مکانیکی و نیروی الکتریکی را در یک محیط اثر پیزو الکتریسیته میگویند. بطور مثال بلورهایی وجود دارند که در اثر فشار مکانیکی، نیروی الکتریکی تولید میکنند و برعکس ایجاد اختلاف پتانسیل در دو سوی همین بلور و در همین راستا باعث فشردگی و انبساط آنها میشود که ادامه دادن به این فشردگی و انبساط باعث نوسان و تولید امواج میشود. مواد (بلورهای) دارای این ویژگی را مواد پیزو الکتریک میگویند. اثر پیزو الکتریسیته فقط در بلورهایی که دارای تقارن مرکزی نیستند، وجود دارد. بلور کوارتز از این دسته مواد است و اولین مادهای بود که برای ایجاد امواج فراصوت از آن استفاده میشد که اکنون هم استفاده میشود.
اگر چه مواد متبلور طبیعی که دارای خاصیت پیزو الکتریسیته باشند، فراوان هستند. ولی در کاربرد امواج فراصوت در پزشکی از کریستالهایی استفاده میشود که سرامیکی بوده و بطور مصنوعی تهیه میشوند. از نمونه این نوع کریستالها، مخلوطی از زیرکونیت و تیتانیت سرب (Lead zirconat & Lead titanat) است که به شدت دارای خاصیت پیزوالکتریسیته هستند. به این مواد که واسطهای برای تبدیل انرژی الکتریکی به انرژی مکانیکی و بالعکس هستند، مبدل یا ترانسدیوسر (transuscer) میگویند. یک ترانسدیوسر فراصوتی بکار میرود که علامت الکتریکی را به انرژی فراصوت تبدیل کند که به داخل بافت بدن نفوذ و انرژی فراصوت انعکاس یافته را به علامت الکتریکی تبدیل کند.
روش مگنتو استریکسیون
این خاصیت در مواد فرومغناطیس (مواد دارای دو قطبیهای مغناطیسی کوچک بطور خود به خود با دو قطبیهای مجاور خود همخط شوند) تحت تأثیر میدان مغناطیسی بوجود میآید. مواد مزبور در این میدانها تغییر طول میدهند و بسته به فرکانس (شمارش زنشهای کامل موج در یک ثانیه) جریان متناوب به نوسان در میآیند و میتوانند امواج فراصوت تولید کنند. این مواد در پزشکی کاربرد ندارند و شدت امواج تولید شده به این روش کم است و بیشتر کاربرد آزمایشگاهی دارد.
عملکرد دستگاههای تصویربرداری و تشخیص با امواج فراصوت
در سیستمهای فراصوت، پالسهای مکانیکی با فرکانسی در محدودهٔ فراصوت، توسط پراب مخصوص منتشر میگردد. این پرابها دارای آرایهای از فرستندههای فرا صوت میباشد. بخشی از امواج منتشر شده در محیط (در اینجا بافتهای زیستی)، با برخورد به مرزهای دو بافت با چگالی متفاوت، دچار بازتابش (اکو) میگردند. میزان این بازتابش وابسته به امپدانس انتشار امواج فراصوت در دو محیط میباشد. اساس سیستمهای تصویربرداری آلتراسوند، تشخیص تاخیرهای سیگنالهای دریافتی و پالسهای ارسال شده میباشد.
در کاربردهای پزشکی، امواج فراصوت با فرکانسهایی در رنج ۱ مگاهرتز الی ۱۸ مگاهرتز، به کار گرفته میشود. فرکانسهای بالا نیاز به فرستندههایی با ابعاد کوچکتر داشته و با توجه به کوتاه تر شدن طول موج، امکان دستیابی به رزولوشن بالاتر را فراهم میآورد، اما با این وجود، میزان تضعیف سیگنال در محیط انتشار، با افزایش فرکانس، افزایش مییابد. به همین دلیل رنج فرکانس معمول ۳ الی ۵ مگاهرتز میباشد.
برای تشخیص سرعت سیالات، مانند سرعت جریان خون، میتوان از اثر داپلی نیز بهره برد. با توجه به اثر دوپلر حرکت سیال موجب ایجاد شیفت فرکانسی در امواج بازتابیده شده میشود. میزان این شیفت فرکانس وابسته به اندازه و جهت سرعت میباشد.
با افزایش فرکانس، الگوی تابش فرستنده به حالت ایزوتروپیک نزدیک میگردد. برای متمرکز نمودن پالسهای ارسالی در یک راستا و حتی یک نقطه خاص میبایست از پرابهای آرایه فازی، استفاده نمود. این پرابها شامل چندین فرستنده/گیرنده پیزوالکتریک بر روی خود میباشند که میتوان به صورت یک ردیف (یک بعدی) و یا چندین ردیف (دو بعدی) کنار هم چیده شده باشند. در حالت پسیو، میتوان چیدمان این المانها را به نحوی طراحی نمود که لوب اصلی الگوی تابش آنتن در یک راستای خاص متمرکز گردد.
در حالت اکتیو فاز، با ایجاد تاخیرهای کنترل شده، در پالسهای ارسالی توسط هر المنت، میتوان جهت لوب اصلی را نیز بدون تغییر موقعیت مکانیکی فرستنده، تغییر داد. در فرستندههای آرایه فازی دو بعدی اکتیو، امکان فوکوس کردن در یک نقطه خاص نیز فراهم میآید. این خصوصیت امکان ایجاد تصاویر دو بعدی و سه بعدی را بدون تغییر دادن مکان پراب، فراهم میآورد.
کاربرد امواج فراصوت
۱. کاربرد تشخیصی (سونوگرافی)
2. بیماریهای زنان و زایمان (Gynecology) مانند بررسی قلب جنین، اندازهگیری قطر سر (سن جنین)، بررسی جایگاه اتصال جفت و محل ناف، تومورهای پستان. 3. بیماریهای مغز و اعصاب(Neurology) مانند بررسی تومور مغزی، خونریزی مغزی به صورت اکوگرام مغزی یا اکوانسفالوگرافی.
4. بیماریهای چشم (ophthalmology) مانند تشخیص اجسام خارجی در درون چشم، تومور عصبی، خونریزی شبکیه، اندازهگیری قطر چشم، فاصله عدسی از شبکیه.
5. بیماریهای کبدی (Hepatic) مانند بررسی کیست و آبسه کبدی.
6. بیماریهای قلبی (cardiology) مانند بررسی اکوکاردیوگرافی.
۷. دندانپزشکی مانند اندازهگیری ضخامت بافت نرم در حفرههای دهانی. و نیز کاربردهای درمانی آن مانند جرم گیری لثه
۸. این امواج به علت اینکه مانند تشعشعات یونیزان عمل نمیکنند. بنابراین برای زنان و کودکان بیخطر هستند. ۹. همچنین برای تصویربرداری از سینه هااستفاده میشود. ۱۰. رزولوشن بالایی از این روش، برای تصویربرداری از بافتهای سطحی و سلولهای نزدیک سطح پوست استفاده میشود. کاربرد درمانی (سونوتراپی): ۱. در فیزیوتراپی جهت کاهش درد و التهاب و همچنین انعطافپذیری بافتها از اولترا سوند استفاده میگردد.
۲. کاربرد گرمایی 11. تزریق بدون جراحت با جذب امواج فراصوت بهوسیله بدن بخشی از انرژی آن به گرما تبدیل میشود. گرمای موضعی حاصل از جذب امواج فراصوت بهبودی را تسریع میکند. قابلیت کشسانی کلاژن (پروتئینی ارتجاعی) را افزایش میدهد. کشش در جوشگاههای زخم (scars) افزایش میدهد و باعث بهبود آنها میشود. اگر اسکار به بافتهای زیرین خود چسبیده باشد، باعث آزاد شدن آنها میشود. گرمای حاصل از امواج فراصوت با گرمای حاصل از گرمایش متفاوت است.
میکروماساژ مکانیکی
به هنگام فشردگی و انبساط محیط، امواج طولی فراصوتی روی بافت اثر میگذارند و باعث جابجایی آب میان بافتی و در نتیجه باعث کاهش ورم (تجمع آب میان بافتی در اثر ضربه به یک محل) میشوند.
درمان آسیب تازه و ورم:آسیب تازه معمولاً با ورم همراه است. فراصوت در بسیاری از موارد برای از بین بردن مواد دفعی در اثر ضربه و کاهش خطر چسبندگی بافتها بهم بکار میرود.
درمان ورم کهنه یا مزمن: فراصوت چسبندگیهایی که میان ساختمانهای مجاور ممکن است ایجاد شود را میشکند.
خطرات فراصوت
جستجو در ویکیانبار در ویکیانبار پروندههایی دربارهٔ سونوگرافی فراصوتی موجود است.
سوختگی
اگر امواج پیوسته و در یک مکان بدون چرخش بکار روند، در بافت باعث سوختگی میشود و باید امواج حرکت داده شوند.
پارگی کروموزومی
استفاده دراز مدت از امواج اولتراسوند با شدت خیلی بالا پارگی در رشته دی ان ای (DNA) را نشان میدهد.
ایجاد حفره
یکی از عوامل کاهش انرژی امواج اولتراسوند هنگام گذشتن از بافتهای بدن ایجاد حفره یا کاویتاسیون است. همه محلولها شامل مقدار قابل ملاحظهای حبابهای گاز غیر قابل دیدن هستند و دامنه بزرگ نوسانهای امواج اولتراسوند در داخل محلولها میتواند بر روی بافتها تغییرات بیولوژیکی ایجاد کند (پارگی در دیواره یاختهها و از هم گسستن مولکولهای بزرگ).
عایق صوتی
هر وسیلهای برای کاهش فشار صوتی با توجه به صدای منبع و گیرنده را عایق صوتی (به انگلیسی: Soundproofing) میگویند.
چندین روش اساسی برای کاهش صدا وجود دارد: افزایش فاصله بین منبع و گیرنده، با استفاده از موانع سر و صدا برای منعکس یا جذب انرژی از امواج صوتی است، با استفاده از سازههای میرایی مانند تیغههای صوتی، و یا با استفاده از عایقهای صوتی.
فواید استفاده از عایق صوتی
بهبود صدا در یک اتاق (اتاق بدون پژواک)
کاهش نشت صدا به / از اتاق مجاور و یا خارج از منزل
آکوستیک آرام بخش
کاهش سر و صدا
کنترل سر و صدا
محدود کردن سر و صدای ناخواسته
عایق صوتی میتواند از امواج صوتی ناخواسته غیر مستقیم مانند سرکوب بازتاب که باعث پژواک جلوگیری کند عایق صوتی میتواند انتقال امواج ناخواسته صدای مستقیم از منبع به شنونده غیر ارادی از طریق کاهش استفاده از فاصله و دخالت اشیاء در مسیر صدا مسیر سازد
روشهای ساده عایقکاری صوتی
1. بستن منافذ ورود و خروج هوا. هر منفذی که هوا بتواند از آن عبور کند،صدا را هم می تواندانتقال دهد. کلیه منافذ موجود در سقفها و دیوارهانظیر اطراف جعبه تقسیم های برق، کانالها و داکتها ،سیم ها و هرجایی راکه شیئی از داخل دیوار یا سقف عبور می کند با بتونه یا فوم پلی اورتان درزگیری نمایید.
2. جلوگیری از ایجاد "کانالهای عبور صدا " در دیوارها. هنگام ساخت بناهای جدید ، کلیدهای برق و دریچه های هوا را در داخل دیوارمشترک دو فضا ، پشت به پشت هم قرار ندهید.
3. اجتناب از استفاده از مصالح سخت. زیرا اینگونه مصالح ,صوت را به آسانی ازیک مکان به مکان دیگر انتقال می دهند.
4. استفاده از یک لایه انعطاف پذیرنظیر فوم منبسط شونده ، جهت جدا نمودن لوله ها از غلافها یا سوراخهایی که از آن عبور می کنند.
5. استفاده از عایق صوتی در دیوارهای ساختمانهای جدید جهت جلوگیری ازانتقال صدا بین اتاقهای مجاور. به منظور جلوگیری از انتقال صدای نامطلوب جریان سریع آب به هنگام تخلیه فلاش تانک توالت، لوله های پلاستیکی تخلیه آب را عایق بندی کنید.
6. استفاده از وسایل خانگی آرامتر، حتی اگر گرانتر از موارد مشابه پرصداتر باشند.
7. جدا نمودن تجهیزات صدادار از محلهای استراحت. استفاده از اطاقهای مجزای مجهز به عایق های صوتی می تواند ایده خوبی درطراحی منزل باشد. بکارگیری درهای مجهز به عایق بین کلیه فضاها ، به مقدار قابل ملاحظه ای از انتقال صدا در خانه جلوگیری می کند.
8. استفاده از مصالح جاذب صدا در کفها، دیوارها و سقفها. عایقهای صوتی به مانند موکت می توانند از عبور صدا جلوگیری نمایند. حتی الامکان ازبکارگیری کفپوشهای سخت، مانند سرامیک، بتن و چوب خودداری نمایید.
صوتشناسی
صوتشناسی یا آکوستیک یکی از شاخههای علم فیزیک است و موضوع آن بررسی موج های مکانیکی در گازها ، مایع ها و جامدها ،از جمله نوسان ها ، صدا ، فراصوت و فروصوت است.کاربردهای آکوستیک در بسیاری از جنبه های زندگی امروز دیده می شوند و ساده ترین نمونه آن صنایع صوتی و نیز کنترل نویز (مکانیکی)است.
واژه ی آکوستیک برگرفته از ریشه ی یونانی ακουστικός ، به معنای "برای و از شنوایی" و نیز از ἀκουστός به معنای قابل شنیدن است.
تاریخچه
از نظر اهمیتی که آکوستیک یا علم صدا دارا میباشد میتوان انتظار داشت که این موضوع در تاریخ علوم فیزیک جزو مطالب اساسی به شمار رفته باشد، در صورتی که چنین چیزی نیست، زیرا در قبال تاریخ سایر علوم، تاریخ آکوستیک قسمت از قلم افتاده و مهجوری بیش نیست. یکی از دلایل این مهجوریت تاریخی این است که نظریه اساسی اصلی راجع به انتشار و اخذ صوت از زمانهای بسیار قدیم در تحولات فکر بشری پیدا شده و اسلوب این فکر همان است که امروزه مورد قبول ماست.
تولید صوت
وقتی که به یک جسم جامد ضربه وارد میسازیم، تولید صدا میکند. تحت بعضی از شرایط صدای حاصل، بگوش انسان خوش آیند و مطبوع است و این در واقع اساس پیدایش علم موسیقی است که سالیان دراز قبل از تاریخ ضبط صوت، موجود بوده است، اما موسیقی، قرنها قبل از نظر علمی مورد تحقیق قرار گیرد، جزو صنایع ظریفه محسوب میگردید. این مطلب مورد قبول عموم است که اولین فیلسوف یونانی که مبنای موسیقی را برسی نموده است. فیثاغورث میباشد که ۶ قرن قبل از میلاد زندگی میکرده است.
10:08 pm
طراح
طراح به کسی میگویند که طراحی میکند.بخشهای اصلی طراحی شامل نقاشی، مجسمه سازی و معماری است که هنرهای بزرگی هستند.
عامل اصلی طراحی حالات روحی روانی فرد است و یکی از عوامل مهم در پدید آمدن آن خط است . خط و حرکت دو پدیده ای هستند که همیشه با هم ایجاد می شوند و به هم مربوطند.هر گونه جلوه ی بصری که با خط ایجاد می شود به حالات روانی و فیزیکی طراح مربوط می شود .

حالات هیجانی طراح ،شادی و نشاط ، غم و تاثر،آرامش و ضعف و حتی دعا و نیایش .پس می توان نتیجه گرفت که خط وسیله ی ثبت و ضبط هیجانات درونی طراح و عکس العمل های او نسبت به جهان خارج است . مطلب دیگر اینکه دستگاه بینایی همه ی افراد مشابه است اما، ما طرحهای متنوعی از هنرمندان را مشاهده می کنیم که این امر ناشی از حالات روانی و سیستم عصبی هر فرد می باشد که دنیا را به نحوی خاص خود می بیند.
طراحی
طراحی به دانش ایجاد یک طرح یا نمایه از هر تصویر ذهنی یا واقعی گفته میشود.
در هنرهای تجسمی، طراحی یا بهصورت یک اثر مستقل و یا بهعنوان پیش طرحی برای اثر اصلی انجام میشود که در این صورت طرح
مقدماتینیز خوانده میشود. طراحی به دو حوزهٔ کلی تقسیم میشود. یکی حوزهٔ drawing (رسم) است که شامل برداشتهای شخصی یا تجربههای آزاد طراح از موضوعات گوناگون با بیان مستقل و به روش های متنوع میباشد و دیگری حوزهٔ design (طراحی) است که شامل مراحل ترکیب عناصر بصری و فضا بر پایهٔ اصول طرح است و جنبهٔ کاربردی دارد، مانند رشتههای طراحی صنعتی، طراحی معماری و طراحی لباس.نقشی که فقط با خط رسم شود و سایهروشن یا لکههای رنگی نداشته باشد طرح خطینامیده میشود. مهمترین موضوع در طرحهای خطی، خطوط پیرامونی اشیاء است.طراحی فنی و مهندسی با خطکش، پرگار، گونیا و ابزارهایی مانند آنها انجام میشود.
الگوی طراحی
الگوی طراحی مستنداتی هستند که از راهحلهای موفق برای رده خاصی از مشکلات بوجود آمده و از آنها در حل مسائل آتی استفاده میشود. در ابتدا یک مهندس معمار به نام کریستوفر الکساندر از الگوهای طراحی در زمینه کاری خود استفاده نمود، بعدها این ایده در زمینههای کاری دیگر نیز گسترش یافته و مخصوصا در برنامهنویسی بسیار پررنگ گردید.
الگوی طراحی در مهندسی نرمافزار
انواع الگوهای طراحی
در ابتدا چندین الگوی طراحی زیربنایی در زمینه مهندسی کامپیوتر مطرح گشت که تعداد آنها حدود ۲۰ عدد بود. ولی اکنون الگوهای طراحی به بیش از ۱۰۰ عدد رسیده به طوری که دیگر نمیتوان تمامی آنها را در یکجا نام برد.
تعدادی از معروفترین الگوهای طراحی را در زیر نام میبریم:
الگوی طراحی آداپتور
الگوی طراحی دستور
الگوی طراحی پل
الگوی طراحی دکوراتور
الگوی طراحی کارخانه
الگوی طراحی وارونگی کنترل
هسته تفکری
با وجود اینکه تعداد الگوهای طراحی در طول زمان افزایش یافته و همچنان افزایش مییابد، تفکر اصلیای که برروی تمامی آنها سایه افکنده و مانند موتور محرکه برای الگوهای طراحیست دو قانون کلی مهندسی نرمافزار است:
پیادهسازی را از واسط برنامه(interface) جدا کنید.
هیچگاه پیادهسازی را استفاده نکرده بلکه تنها از واسطهای برنامه استفاده کنید. همچنین عدهای بر این نظرند که الگوهای طراحی به دلیل مشکلاتی که نوع تفکر در یک زبان برنامهنویسی دارد بوجود آمدهاند و اگر به طرز تفکری ایدهآل در زمینه زبانهای نرمافزاری برسیم دیگر نیازی نیست تا راهکارهایی غیرمعمول برای مشکلات استفاده کنیم.در هر حال تا رسیدن به آن نقطه آرمانی میتوان از الگوهای طراحی برای حل مشکلات خاص استفاده نمود.
طراحی رایانهای
طراحی رایانهاییا کَد، به انگلیسی (Computer Aided Design) به استفاده از فناوری رایانه در فرایند طراحی و مستندسازی طراحی گفته میشود.
امروزه بسیاری از مراحل طراحی قطعات و اجزاء مختلف توسط رایانه انجام میشود. بسیاری از قطعات تحت شرایط مختلف باید آزمایش شوند و اگر بخواهیم تحت آزمایش واقعی قرار دهیم مستلزم هزینههای بسیار زیاد میشود. با نرمافزارهای بسیار متنوع میتوان این شبیه سازی را انجام داد.
نرمافزارهای طراحی رایانهای، به نرمافزارهایی اطلاق میشود که کار ایجاد و ویرایش اشکال را به کمک رایانه انجام میدهند. امروزه بیشتر نرمافزارهای طراحی به کمک رایانه، نه تنها توانایی ایجاد و ویرایش نقشهٔ دوبعدی و سهبعدی قطعات را دارند، بلکه توانایی وارسی (تحلیل) قطعات از نظر مسائل تنش، گرما و مسائل مکانیکی با استفاده از روش المان محدود را دارند
.تمام رشتههای مهندسی برای طراحی از نرمافزارهای مناسب خود استفاده میکنند. نرمافزارهای مورد استفاده در طراحی معماری و طراحی صنعتی اغلب نرمافزارهای گرافیکی هستند. از نرمافزارهای سه بعدی که بیشتر در طراحی معماری و طراحی صنعتی استفاده میشوند میتوان به اتوکد، سالیدورکس، اینونتور، سالید اج و مکانیکال دسکتاپ اشاره کرد. علاوه بر این موارد، نرمافزارهای گرافیکی دو بعدی مانند فتوشاپ، کورلدراو و فریهند نیز بسیار پر کاربرد هستند. کتیا ، یونیگرافیکس و پرو/اینجینیر هم از بهترین نرمافزارهای گرافیکی مورد استفادهاست که با امکان محاسبات پیچیده مهندسی از قبیل محاسبات تنشهای محوری وهزاران قابلیت حرفهای دیگر به طراحان کمک کردهاند.
طراحی هوشمند
طراحی هوشمند (به انگلیسی: Intelligent design) یا آفرینش هوشمند، ایدهای است که هواداران آن معتقدند، بهترین توضیح برای جهان و موجودات زنده با فرض وجود علتی هوشمند محقق میشود، و جهان آنچنان ساده نیست که توسط طبیعت ساخته شود.
طرفداران این مدل می گویند میبایست وجودی هوشمند بر این جهان احاطه داشته باشد. آفرینش هوشمند بیانگر آن است که جهان تنها با تکامل شکل نگرفته است.
این مدل -که قرائت جدیدی از برهان نظم است- توسط گروهی از متفکران دارای صبغهٔ دانشگاهی پیش کشیده شده است. این متفکران عقیده دارند که شواهد تجربی علم زیستشناسی و نیز برهانهای ریاضی موید ادعاهای آنهاست. آنها بر خلاف طرفداران سنتی آفرینش به وقوع تغییرات بسیار جزیی در موجودات در طول زمانهای طولانی معتقدند و نیز به عمر طولانی حیات در کرهٔ زمین (و نه ۶۰۰۰ سال که در کتاب مقدس آمده) اذعان دارند.
اما آنچه که سبب شهرت سریع و گستردهٔ این نظریه شد، جنجال رسانهای موافقان و مخالفان گنجاندن این نظریه در برنامهٔ درس علوم مدارس امریکا و سپس کشیده شدن این مسئله به دادگاه در سال ۲۰۰۵ بود.
نظریهپردازان
ویلیام دمبسکی و جان جونز از نظریه پردازان مشهور حوزهٔ آفرینش هوشمند هستند.از اصلیترین کتبی که اخیراً در این خصوص نگاشته شده، می توان به امضا در سلول:DNA و شواهدی بر طراحی هوشمند، تالیف استفان مایر اشاره نمود.
استدلال ها
پیچیدگیهای مشخص شده
این مفهوم که برای اولین بار توسط ویلیام دمبسکی ارایه شد، بر وجود دو خصیصه همزمان در دستگاههای کاینات تاکید میکند که به زعم مبدع آن- دمبسکی- نشانگر آفرینش جهان توسط طراح هوشمندی است. دمبسکی این دو خصیصه را اولاً وجود پیچیدگی و ثانیاً کاملاً مشخص بودن آن بر میشمرد.
او پیچیدگی را امری میداند که احتمال وقوع آن به خودی خود بسیار کم است و مشخص بودن آنرا در آن میداند که شما بتوانید آن امر را با توصیفاتی بسیار کوتاه، بطوری که برای همگان قابل فهم باشد مشخص کنید. به عنوان مثالهایی که هر دو این خصیصه را در خود دارند میتوان به دنباله طولانیای از اعداد اول اشاره کرد که طولانی بودن آن نشانه پیچیدگی و اول بودن آن نشانه مشخص بودنش است، یا یک غزل از شکسپیر که از کنار هم قرار گرفتن بسیاری حروف الفبا تشکیل شده است که طولانی بودنش دلیلی بر پیچیدگیاش و با معنی بودنش نشانهای از مشخص بودنش است.
دمبسکی میگوید که اگر شما یک گیرنده رادیویی برای دریافت امواج فضایی داشته باشید و روزی مثلاً امواجی به شکل دنباله اعداد اول را از فضا دریافت کنید مطمئناً ارسال کننده آنرا یک موجود هوشمند خواهید شمرد.
ثوابت فیزیکی تنظیم شده
نظریهپردازان آفرینش هوشمند استدلال میکنند که ثوابت فیزیکی جهان هستی به شکلی کاملاً دقیق تنظیم شدهاند. به نحوی که اگر در مقادیرشان، کوچکترین تغییری وجود میداشت، حیات به شکل کنونیاش ابداً قابل شکلگیری نمیبود.
از جمله این ثوابت میشود ثابت کیهانشناختی، ثابت گرانش، ثابت ساختار ریز، سرعت نور، ثابت پلانک و برخی دیگر را نام برد .
پیچیدگیهای غیر قابل فروکاست و اجزای مرتبط
بعضی دستگاههای دارای اجزای متعدد، دارای این ویژگی هستند که فقط و فقط در صورت وجود تک تک اجزایشان قادر به کار کردن هستند، به شکلی که شما نمیتوانید یکی از اجزای آنها را از آنها جدا کرده و دستگاه کماکان قادر به کار کردن باشد. بعنوان مثال میتوانید یک موتور خودرو را در نظر بگیرید که برای حرکت نیازمند تمامی اجزای خود است.
پیچیدگیهای موجود در این دستگاهها را اصطلاحاً پیچیدگیهای کاهشناپذیر مینامند. طرفداران نظریه آفرینش هوشمند معتقدند که دستگاههای دارای پیچیدگیهای کاهشناپذیر، نمیتوانند از تکامل تدریجی و انتخاب طبیعی به وجود آمده باشند چرا که هر تغییر جزیی در آنها به قیمت از کار افتادنشان تمام میشود.
ریچارد داوکینز در پاسخ مینویسد:
«این پرسشها که «نصف یک چشم به چه کار میآید؟» و یا «نصف یک بال به چه کار میآید؟» نمونههایی از برهان «پیچیدگی فرونکاستنی» هستند. یک واحد کارکردی را هنگامی دارای پیچیدگی فرونکاستنی میدانیم که برداشتن یکی از اجزای آن واحد، موجب اختلال کلی در کارکرد آن شود. این برهان فرض میگیرد که چشم و بال پیچیدگی فرونکاستنی دارند. اما همین که یک لحظه بیندیشیم، بی درنگ مغالطه را درمی یابیم. اگر عدسی چشم یک بیمار مبتلا به آب مروارید را با جراحی برداریم، او دیگر بدون عینک نمیتواند تصاویر را به وضوح ببیند، اما آن قدر بینایی دارد که با درخت برخورد نکند و یا از صخره فرونیفتد. درست است که داشتن نصف بال، به خوبی داشتن یک بال کامل نیست، اما مسلماً از بال نداشتن بهتر است. موقع سقوط از درختی به ارتفاع معین، بال نصفه میتواند شدت ضربهٔ برخوردتان به زمین را تخفیف، و جان تان را نجات دهد. و اگر ۵۱ درصد از یک بال را داشته باشید، میتوانید از درختی اندکی بلند تر بیافتید و باز زنده بمانید. هر کسری از بال را که داشته باشید، ارتفاعی هست که با داشتن آن بال، جان تان نجات مییابد، در حالی که اگر بال تان اندکی کوچک تر بود از آن ارتفاع معین جان بدر نمیبردید. این آزمایش فکری دربارهٔ سقوط از درختهایی با ارتفاعهای معین، یک شیوهٔ درک این مطلب است که، به لحاظ نظری، منحنی مزیت بال باید شیب ملایمی داشته باشد که از ۱ تا ۱۰۰ درصد امتداد مییابد. جنگلها پر از جانوران هواسُر یا چَترباز هستند. این جانوران عملاً مراحل مختلف این شیب صعودی بال به قلهٔ محال را نشان میدهند.
اگر بخواهیم برای کاربرد چشم هم مثالی مشابه کاربرد بالهای ناقص هنگام افتادن از درختان با ارتفاعات مختلف بزنیم، به راحتی میتوانیم موقعیتهایی را تصور کنیم که در آنها نصف یک چشم، جان جانور را نجات میدهد، در حالی که ۴۹ درصد آن چشم چنین نمیکند. این شیبهای ملایم تکاملی چشم را میتوان در تغییرات شرایط نوری، و تغییرات فاصلهٔ تشخیص شکارچی – یا شکار– یافت. و درست مانند وضعیت بالها و سطوح پروازی، حالتهای میانی چشم هم نه تنها قابل تصور اند، بلکه در سراسر دنیای وحش فراوان اند. کِرم پَهن، چشمی دارد که با هر معیار معقولی، محقرتر از نصف چشم انسان است. حلزون دریایی ناوتیلوس چشمی دارد که در میانهٔ راه چشم کرم پَهن و چشم انسان است. برخلاف چشم کرِم پَهن که فقط نور و سایه را تشخیص میدهد، اما تصاویر را نمیتواند ببیند، چشم ناوتیلوس شبیه دوربینی بی عدسی است که میتواند یک تصویر حقیقی بسازد؛ اما تصویر آن در مقایسه با تصویر چشم ما تیره و تار است. هیچ آدم عاقلی نمیتواند انکار کند که چشم داشتن برای این جانور بی مهره و بسیاری جانواردان دیگر، بهتر از چشم نداشتن است و همگی این چشمها در جایی روی این شیب پیوسته و ملایم به سوی قلهٔ محال جای میگیرند. بر روی این شیب، چشم ما نزدیک به یک قلهاست – هرچند نه مرتفع ترین قله، اما یکی از مرتفع ترین قلهها. در کتاب صعود به قلهٔ محال من یک فصل کامل را به چشم و یک فصل را نیز به بال اختصاص دادهام، و نشان دادهام که این دو به چه سادگی توانستهاند آهسته (وحتی شاید نه چندان آهسته) این مراتب صعودی را بپیمایند. در اینجا این موضوع را ختم میکنم .»
انتقاد نسبتبه حوزههایی که هنوز بیپاسخاند
با پیشرفت زیست شناسی، منتقدان توجه خود را به سیستمهای پیچیده سلولی مانند سیستم ایمنی و ساختارهای پیچیده مولکولی مانند موتور تاژک باکتریها معطوف کردند. با اینکه شیوهٔ فرگشت پیچیدهترین سیستمهای زیستی شناخته شده یا در دست تحقیق است.در مقابل مدافعان فرگشت، این انتقاد را نوعی مغالطه توسل به جهل می دانند.
واکنشها و تاثیرات
انتقادات دانشمندان
بسیاری گفته اند که تا کنون، مبنای علمی چندان مستحکمی برای این مدل ارائه نشده است.دانشمندان از این مدل با عناوینی همچون junk science و semi science یاد می کنند؛ زیرا مبنای علمی ندارد.
دادگاه
در سپتامبر سال ۲۰۰۵، والدین ۱۱ دانشآموز مدرسهای در منطقه داور در ایالت پنسیلوانیا از مسوولان مدرسهٔ منطقهای داور بسبب گنجاندن نظریه آفرینش هوشمند در برنامه درسی دانشآموزان و تدریس آن به عنوان نظریهای علمی در کنار نظریه تکامل شکایت کردند.
قاضی دادگاه فدرال، جان جونز، در نهایت مسوولان مدرسه داور را به علت تخلف از متمم اول قانون اساسی امریکا مجرم شناخت. دادگاه همچنین حکم به خارج کردن تدریس این نظریه از برنامه درس علوم دانشآموزان مدرسه داد.
طراحی وب
طراحی وب به مهارت ساخت و راهاندازی صفحات وب گفته میشود.
تیم برنرز لی، مخترع وب، با برپایی یک سایت وب در اوت ۱۹۹۱، نام خود را به عنوان نخستین سازندهٔ وب در تاریخ نگاشت. او در نخستین وبسایتش، از اَبَرمتن و پیوندی برای ایمیل (پست الکترونیک) استفاده کرده بود.
در آغاز، سایتهای وب با کُدهای ساده «اچتیامال» نوشته میشدند، گونهای از زبان کُدنویسی که ساختار سادهای به وبگاهها میداد، شامل سرتیتر و پاراگراف، و توانایی پیوند دادن به صفحههای وب دیگر، با اَبَرمتن. در مقایسه با روشهای دیگر، این راه تازه و متفاوتی بود که کاربران به سادگی میتوانستند با یک مرورگر، صفحههای پیوند خورده را باز کنند.
با پیشرفت وب و هنر طراحی آن، زبان کُد نویسی اش، اَبَرمتن یا اچتیامال، پیچیدهتر و پرانعطافتر شد. ابزاری مانند جدولها که بیشتر برای نمایش نمودارهای دادهای بودند، بزودی مورد استفاده نادرست، برای چیدمانهای پنهان در صفحههای وب قرار گرفتند. با پیدایش الگوهای آبشاری وب یا «CSS»، روش نادرست طراحی با جدولهای پنهان در صفحه از گردونه خارج، و بجای آن استفاده مناسب از زبان کمکی «CSS» جایگزین شد.
فناوریهای یکپارچه سازی دادهگاهها (Database)، مانند زبانهای کُدنویسی سمت سرور (Server-Side Scripting) مانند CGI، PHP، ASP.NET، ASP، JSP و ColdFusion، و استانداردهای طراحی مدرن با الگوها (CSS)، ساختار سایتهای وب را باز هم تغییر داده و آنرا پیشرفته تر کرده اند.
همچنین با آمدن نگارههای جاندار و فناوریهای پویانمایی به صفحه ها، مانند فلَش (Flash)، چهره وب بیشتر از پیش تغییر کرد و توانمندیهای تازه به سازندگان رسانه و طراحهای وب داده شد، و تواناییهای بیشتر و کاراییها تازه مرورگرها برای اچتیامال
طراح به کسی میگویند که طراحی میکند.بخشهای اصلی طراحی شامل نقاشی، مجسمه سازی و معماری است که هنرهای بزرگی هستند.
عامل اصلی طراحی حالات روحی روانی فرد است و یکی از عوامل مهم در پدید آمدن آن خط است . خط و حرکت دو پدیده ای هستند که همیشه با هم ایجاد می شوند و به هم مربوطند.هر گونه جلوه ی بصری که با خط ایجاد می شود به حالات روانی و فیزیکی طراح مربوط می شود .

حالات هیجانی طراح ،شادی و نشاط ، غم و تاثر،آرامش و ضعف و حتی دعا و نیایش .پس می توان نتیجه گرفت که خط وسیله ی ثبت و ضبط هیجانات درونی طراح و عکس العمل های او نسبت به جهان خارج است . مطلب دیگر اینکه دستگاه بینایی همه ی افراد مشابه است اما، ما طرحهای متنوعی از هنرمندان را مشاهده می کنیم که این امر ناشی از حالات روانی و سیستم عصبی هر فرد می باشد که دنیا را به نحوی خاص خود می بیند.
طراحی
طراحی به دانش ایجاد یک طرح یا نمایه از هر تصویر ذهنی یا واقعی گفته میشود.
در هنرهای تجسمی، طراحی یا بهصورت یک اثر مستقل و یا بهعنوان پیش طرحی برای اثر اصلی انجام میشود که در این صورت طرح
مقدماتینیز خوانده میشود. طراحی به دو حوزهٔ کلی تقسیم میشود. یکی حوزهٔ drawing (رسم) است که شامل برداشتهای شخصی یا تجربههای آزاد طراح از موضوعات گوناگون با بیان مستقل و به روش های متنوع میباشد و دیگری حوزهٔ design (طراحی) است که شامل مراحل ترکیب عناصر بصری و فضا بر پایهٔ اصول طرح است و جنبهٔ کاربردی دارد، مانند رشتههای طراحی صنعتی، طراحی معماری و طراحی لباس.نقشی که فقط با خط رسم شود و سایهروشن یا لکههای رنگی نداشته باشد طرح خطینامیده میشود. مهمترین موضوع در طرحهای خطی، خطوط پیرامونی اشیاء است.طراحی فنی و مهندسی با خطکش، پرگار، گونیا و ابزارهایی مانند آنها انجام میشود.
الگوی طراحی
الگوی طراحی مستنداتی هستند که از راهحلهای موفق برای رده خاصی از مشکلات بوجود آمده و از آنها در حل مسائل آتی استفاده میشود. در ابتدا یک مهندس معمار به نام کریستوفر الکساندر از الگوهای طراحی در زمینه کاری خود استفاده نمود، بعدها این ایده در زمینههای کاری دیگر نیز گسترش یافته و مخصوصا در برنامهنویسی بسیار پررنگ گردید.
الگوی طراحی در مهندسی نرمافزار
انواع الگوهای طراحی
در ابتدا چندین الگوی طراحی زیربنایی در زمینه مهندسی کامپیوتر مطرح گشت که تعداد آنها حدود ۲۰ عدد بود. ولی اکنون الگوهای طراحی به بیش از ۱۰۰ عدد رسیده به طوری که دیگر نمیتوان تمامی آنها را در یکجا نام برد.
تعدادی از معروفترین الگوهای طراحی را در زیر نام میبریم:
الگوی طراحی آداپتور
الگوی طراحی دستور
الگوی طراحی پل
الگوی طراحی دکوراتور
الگوی طراحی کارخانه
الگوی طراحی وارونگی کنترل
هسته تفکری
با وجود اینکه تعداد الگوهای طراحی در طول زمان افزایش یافته و همچنان افزایش مییابد، تفکر اصلیای که برروی تمامی آنها سایه افکنده و مانند موتور محرکه برای الگوهای طراحیست دو قانون کلی مهندسی نرمافزار است:
پیادهسازی را از واسط برنامه(interface) جدا کنید.
هیچگاه پیادهسازی را استفاده نکرده بلکه تنها از واسطهای برنامه استفاده کنید. همچنین عدهای بر این نظرند که الگوهای طراحی به دلیل مشکلاتی که نوع تفکر در یک زبان برنامهنویسی دارد بوجود آمدهاند و اگر به طرز تفکری ایدهآل در زمینه زبانهای نرمافزاری برسیم دیگر نیازی نیست تا راهکارهایی غیرمعمول برای مشکلات استفاده کنیم.در هر حال تا رسیدن به آن نقطه آرمانی میتوان از الگوهای طراحی برای حل مشکلات خاص استفاده نمود.
طراحی رایانهای
طراحی رایانهاییا کَد، به انگلیسی (Computer Aided Design) به استفاده از فناوری رایانه در فرایند طراحی و مستندسازی طراحی گفته میشود.
امروزه بسیاری از مراحل طراحی قطعات و اجزاء مختلف توسط رایانه انجام میشود. بسیاری از قطعات تحت شرایط مختلف باید آزمایش شوند و اگر بخواهیم تحت آزمایش واقعی قرار دهیم مستلزم هزینههای بسیار زیاد میشود. با نرمافزارهای بسیار متنوع میتوان این شبیه سازی را انجام داد.
نرمافزارهای طراحی رایانهای، به نرمافزارهایی اطلاق میشود که کار ایجاد و ویرایش اشکال را به کمک رایانه انجام میدهند. امروزه بیشتر نرمافزارهای طراحی به کمک رایانه، نه تنها توانایی ایجاد و ویرایش نقشهٔ دوبعدی و سهبعدی قطعات را دارند، بلکه توانایی وارسی (تحلیل) قطعات از نظر مسائل تنش، گرما و مسائل مکانیکی با استفاده از روش المان محدود را دارند
.تمام رشتههای مهندسی برای طراحی از نرمافزارهای مناسب خود استفاده میکنند. نرمافزارهای مورد استفاده در طراحی معماری و طراحی صنعتی اغلب نرمافزارهای گرافیکی هستند. از نرمافزارهای سه بعدی که بیشتر در طراحی معماری و طراحی صنعتی استفاده میشوند میتوان به اتوکد، سالیدورکس، اینونتور، سالید اج و مکانیکال دسکتاپ اشاره کرد. علاوه بر این موارد، نرمافزارهای گرافیکی دو بعدی مانند فتوشاپ، کورلدراو و فریهند نیز بسیار پر کاربرد هستند. کتیا ، یونیگرافیکس و پرو/اینجینیر هم از بهترین نرمافزارهای گرافیکی مورد استفادهاست که با امکان محاسبات پیچیده مهندسی از قبیل محاسبات تنشهای محوری وهزاران قابلیت حرفهای دیگر به طراحان کمک کردهاند.
طراحی هوشمند
طراحی هوشمند (به انگلیسی: Intelligent design) یا آفرینش هوشمند، ایدهای است که هواداران آن معتقدند، بهترین توضیح برای جهان و موجودات زنده با فرض وجود علتی هوشمند محقق میشود، و جهان آنچنان ساده نیست که توسط طبیعت ساخته شود.
طرفداران این مدل می گویند میبایست وجودی هوشمند بر این جهان احاطه داشته باشد. آفرینش هوشمند بیانگر آن است که جهان تنها با تکامل شکل نگرفته است.
این مدل -که قرائت جدیدی از برهان نظم است- توسط گروهی از متفکران دارای صبغهٔ دانشگاهی پیش کشیده شده است. این متفکران عقیده دارند که شواهد تجربی علم زیستشناسی و نیز برهانهای ریاضی موید ادعاهای آنهاست. آنها بر خلاف طرفداران سنتی آفرینش به وقوع تغییرات بسیار جزیی در موجودات در طول زمانهای طولانی معتقدند و نیز به عمر طولانی حیات در کرهٔ زمین (و نه ۶۰۰۰ سال که در کتاب مقدس آمده) اذعان دارند.
اما آنچه که سبب شهرت سریع و گستردهٔ این نظریه شد، جنجال رسانهای موافقان و مخالفان گنجاندن این نظریه در برنامهٔ درس علوم مدارس امریکا و سپس کشیده شدن این مسئله به دادگاه در سال ۲۰۰۵ بود.
نظریهپردازان
ویلیام دمبسکی و جان جونز از نظریه پردازان مشهور حوزهٔ آفرینش هوشمند هستند.از اصلیترین کتبی که اخیراً در این خصوص نگاشته شده، می توان به امضا در سلول:DNA و شواهدی بر طراحی هوشمند، تالیف استفان مایر اشاره نمود.
استدلال ها
پیچیدگیهای مشخص شده
این مفهوم که برای اولین بار توسط ویلیام دمبسکی ارایه شد، بر وجود دو خصیصه همزمان در دستگاههای کاینات تاکید میکند که به زعم مبدع آن- دمبسکی- نشانگر آفرینش جهان توسط طراح هوشمندی است. دمبسکی این دو خصیصه را اولاً وجود پیچیدگی و ثانیاً کاملاً مشخص بودن آن بر میشمرد.
او پیچیدگی را امری میداند که احتمال وقوع آن به خودی خود بسیار کم است و مشخص بودن آنرا در آن میداند که شما بتوانید آن امر را با توصیفاتی بسیار کوتاه، بطوری که برای همگان قابل فهم باشد مشخص کنید. به عنوان مثالهایی که هر دو این خصیصه را در خود دارند میتوان به دنباله طولانیای از اعداد اول اشاره کرد که طولانی بودن آن نشانه پیچیدگی و اول بودن آن نشانه مشخص بودنش است، یا یک غزل از شکسپیر که از کنار هم قرار گرفتن بسیاری حروف الفبا تشکیل شده است که طولانی بودنش دلیلی بر پیچیدگیاش و با معنی بودنش نشانهای از مشخص بودنش است.
دمبسکی میگوید که اگر شما یک گیرنده رادیویی برای دریافت امواج فضایی داشته باشید و روزی مثلاً امواجی به شکل دنباله اعداد اول را از فضا دریافت کنید مطمئناً ارسال کننده آنرا یک موجود هوشمند خواهید شمرد.
ثوابت فیزیکی تنظیم شده
نظریهپردازان آفرینش هوشمند استدلال میکنند که ثوابت فیزیکی جهان هستی به شکلی کاملاً دقیق تنظیم شدهاند. به نحوی که اگر در مقادیرشان، کوچکترین تغییری وجود میداشت، حیات به شکل کنونیاش ابداً قابل شکلگیری نمیبود.
از جمله این ثوابت میشود ثابت کیهانشناختی، ثابت گرانش، ثابت ساختار ریز، سرعت نور، ثابت پلانک و برخی دیگر را نام برد .
پیچیدگیهای غیر قابل فروکاست و اجزای مرتبط
بعضی دستگاههای دارای اجزای متعدد، دارای این ویژگی هستند که فقط و فقط در صورت وجود تک تک اجزایشان قادر به کار کردن هستند، به شکلی که شما نمیتوانید یکی از اجزای آنها را از آنها جدا کرده و دستگاه کماکان قادر به کار کردن باشد. بعنوان مثال میتوانید یک موتور خودرو را در نظر بگیرید که برای حرکت نیازمند تمامی اجزای خود است.
پیچیدگیهای موجود در این دستگاهها را اصطلاحاً پیچیدگیهای کاهشناپذیر مینامند. طرفداران نظریه آفرینش هوشمند معتقدند که دستگاههای دارای پیچیدگیهای کاهشناپذیر، نمیتوانند از تکامل تدریجی و انتخاب طبیعی به وجود آمده باشند چرا که هر تغییر جزیی در آنها به قیمت از کار افتادنشان تمام میشود.
ریچارد داوکینز در پاسخ مینویسد:
«این پرسشها که «نصف یک چشم به چه کار میآید؟» و یا «نصف یک بال به چه کار میآید؟» نمونههایی از برهان «پیچیدگی فرونکاستنی» هستند. یک واحد کارکردی را هنگامی دارای پیچیدگی فرونکاستنی میدانیم که برداشتن یکی از اجزای آن واحد، موجب اختلال کلی در کارکرد آن شود. این برهان فرض میگیرد که چشم و بال پیچیدگی فرونکاستنی دارند. اما همین که یک لحظه بیندیشیم، بی درنگ مغالطه را درمی یابیم. اگر عدسی چشم یک بیمار مبتلا به آب مروارید را با جراحی برداریم، او دیگر بدون عینک نمیتواند تصاویر را به وضوح ببیند، اما آن قدر بینایی دارد که با درخت برخورد نکند و یا از صخره فرونیفتد. درست است که داشتن نصف بال، به خوبی داشتن یک بال کامل نیست، اما مسلماً از بال نداشتن بهتر است. موقع سقوط از درختی به ارتفاع معین، بال نصفه میتواند شدت ضربهٔ برخوردتان به زمین را تخفیف، و جان تان را نجات دهد. و اگر ۵۱ درصد از یک بال را داشته باشید، میتوانید از درختی اندکی بلند تر بیافتید و باز زنده بمانید. هر کسری از بال را که داشته باشید، ارتفاعی هست که با داشتن آن بال، جان تان نجات مییابد، در حالی که اگر بال تان اندکی کوچک تر بود از آن ارتفاع معین جان بدر نمیبردید. این آزمایش فکری دربارهٔ سقوط از درختهایی با ارتفاعهای معین، یک شیوهٔ درک این مطلب است که، به لحاظ نظری، منحنی مزیت بال باید شیب ملایمی داشته باشد که از ۱ تا ۱۰۰ درصد امتداد مییابد. جنگلها پر از جانوران هواسُر یا چَترباز هستند. این جانوران عملاً مراحل مختلف این شیب صعودی بال به قلهٔ محال را نشان میدهند.
اگر بخواهیم برای کاربرد چشم هم مثالی مشابه کاربرد بالهای ناقص هنگام افتادن از درختان با ارتفاعات مختلف بزنیم، به راحتی میتوانیم موقعیتهایی را تصور کنیم که در آنها نصف یک چشم، جان جانور را نجات میدهد، در حالی که ۴۹ درصد آن چشم چنین نمیکند. این شیبهای ملایم تکاملی چشم را میتوان در تغییرات شرایط نوری، و تغییرات فاصلهٔ تشخیص شکارچی – یا شکار– یافت. و درست مانند وضعیت بالها و سطوح پروازی، حالتهای میانی چشم هم نه تنها قابل تصور اند، بلکه در سراسر دنیای وحش فراوان اند. کِرم پَهن، چشمی دارد که با هر معیار معقولی، محقرتر از نصف چشم انسان است. حلزون دریایی ناوتیلوس چشمی دارد که در میانهٔ راه چشم کرم پَهن و چشم انسان است. برخلاف چشم کرِم پَهن که فقط نور و سایه را تشخیص میدهد، اما تصاویر را نمیتواند ببیند، چشم ناوتیلوس شبیه دوربینی بی عدسی است که میتواند یک تصویر حقیقی بسازد؛ اما تصویر آن در مقایسه با تصویر چشم ما تیره و تار است. هیچ آدم عاقلی نمیتواند انکار کند که چشم داشتن برای این جانور بی مهره و بسیاری جانواردان دیگر، بهتر از چشم نداشتن است و همگی این چشمها در جایی روی این شیب پیوسته و ملایم به سوی قلهٔ محال جای میگیرند. بر روی این شیب، چشم ما نزدیک به یک قلهاست – هرچند نه مرتفع ترین قله، اما یکی از مرتفع ترین قلهها. در کتاب صعود به قلهٔ محال من یک فصل کامل را به چشم و یک فصل را نیز به بال اختصاص دادهام، و نشان دادهام که این دو به چه سادگی توانستهاند آهسته (وحتی شاید نه چندان آهسته) این مراتب صعودی را بپیمایند. در اینجا این موضوع را ختم میکنم .»
انتقاد نسبتبه حوزههایی که هنوز بیپاسخاند
با پیشرفت زیست شناسی، منتقدان توجه خود را به سیستمهای پیچیده سلولی مانند سیستم ایمنی و ساختارهای پیچیده مولکولی مانند موتور تاژک باکتریها معطوف کردند. با اینکه شیوهٔ فرگشت پیچیدهترین سیستمهای زیستی شناخته شده یا در دست تحقیق است.در مقابل مدافعان فرگشت، این انتقاد را نوعی مغالطه توسل به جهل می دانند.
واکنشها و تاثیرات
انتقادات دانشمندان
بسیاری گفته اند که تا کنون، مبنای علمی چندان مستحکمی برای این مدل ارائه نشده است.دانشمندان از این مدل با عناوینی همچون junk science و semi science یاد می کنند؛ زیرا مبنای علمی ندارد.
دادگاه
در سپتامبر سال ۲۰۰۵، والدین ۱۱ دانشآموز مدرسهای در منطقه داور در ایالت پنسیلوانیا از مسوولان مدرسهٔ منطقهای داور بسبب گنجاندن نظریه آفرینش هوشمند در برنامه درسی دانشآموزان و تدریس آن به عنوان نظریهای علمی در کنار نظریه تکامل شکایت کردند.
قاضی دادگاه فدرال، جان جونز، در نهایت مسوولان مدرسه داور را به علت تخلف از متمم اول قانون اساسی امریکا مجرم شناخت. دادگاه همچنین حکم به خارج کردن تدریس این نظریه از برنامه درس علوم دانشآموزان مدرسه داد.
طراحی وب
طراحی وب به مهارت ساخت و راهاندازی صفحات وب گفته میشود.
تیم برنرز لی، مخترع وب، با برپایی یک سایت وب در اوت ۱۹۹۱، نام خود را به عنوان نخستین سازندهٔ وب در تاریخ نگاشت. او در نخستین وبسایتش، از اَبَرمتن و پیوندی برای ایمیل (پست الکترونیک) استفاده کرده بود.
در آغاز، سایتهای وب با کُدهای ساده «اچتیامال» نوشته میشدند، گونهای از زبان کُدنویسی که ساختار سادهای به وبگاهها میداد، شامل سرتیتر و پاراگراف، و توانایی پیوند دادن به صفحههای وب دیگر، با اَبَرمتن. در مقایسه با روشهای دیگر، این راه تازه و متفاوتی بود که کاربران به سادگی میتوانستند با یک مرورگر، صفحههای پیوند خورده را باز کنند.
با پیشرفت وب و هنر طراحی آن، زبان کُد نویسی اش، اَبَرمتن یا اچتیامال، پیچیدهتر و پرانعطافتر شد. ابزاری مانند جدولها که بیشتر برای نمایش نمودارهای دادهای بودند، بزودی مورد استفاده نادرست، برای چیدمانهای پنهان در صفحههای وب قرار گرفتند. با پیدایش الگوهای آبشاری وب یا «CSS»، روش نادرست طراحی با جدولهای پنهان در صفحه از گردونه خارج، و بجای آن استفاده مناسب از زبان کمکی «CSS» جایگزین شد.
فناوریهای یکپارچه سازی دادهگاهها (Database)، مانند زبانهای کُدنویسی سمت سرور (Server-Side Scripting) مانند CGI، PHP، ASP.NET، ASP، JSP و ColdFusion، و استانداردهای طراحی مدرن با الگوها (CSS)، ساختار سایتهای وب را باز هم تغییر داده و آنرا پیشرفته تر کرده اند.
همچنین با آمدن نگارههای جاندار و فناوریهای پویانمایی به صفحه ها، مانند فلَش (Flash)، چهره وب بیشتر از پیش تغییر کرد و توانمندیهای تازه به سازندگان رسانه و طراحهای وب داده شد، و تواناییهای بیشتر و کاراییها تازه مرورگرها برای اچتیامال
ساعت : 10:08 pm | نویسنده : admin
|
مطلب بعدی